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Abstract

The elastic-scattering of electrons from atomic helium

in the ground state is investigated. It is shown that for low

energy incident electrons the scattering problem reduces to solving

an ordinary integro-differential equation for the scattering

wave-function. A method is discussed to obtain approximate solutions

to the integro-differential equation by variational principles.

The extremum condition of the variational method is formulated into

a general N x N matrix equation which reduces to a 2 x 2 eigen-value

matrix problem for the phase-shift of the scattering electron.

An algorithm is presented to obtain the collisional cross-section

for elastic scattering as a function of incident electron energyA
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I. Introduction

Background

It is well-known that approximate methods based on variational

principles are among the most powerful techniques used in solving

quantum mechanical problems. In bound-state calculations, the

Raleigh-Ritz variational method gives energy eigen-values which are

correct to second order in the error of an assumed trial wave-function.

The method also determines the free parameters of the wave-function

and guarantees that the calculated eigen-values are upper bounds

to the exact energy eigen-values of the bound system.

In scattering theory however, the total energy of the system

is specified in advance. Variational principles are used to determine

to first order the free parameters of the trial wave-function which

contain all information of the scattering event. Unfortunately, no

general bounding conditions are yet known on the solutions of the

continuum problem calculated by variational methods. Thus there exists I:
no defined standard (e.g., upper or lower bounds) with which to compare

computed results using different trial wave-functions.

In spite of this difficulty, variational principles applied to

scattering probl,:7z ofer several advantages over other approximation

methods. First, variational methods require, in general, far less

numerical effort than non-variational methods. Second, results

obtained by variational calculations, although not internally bounded,

compare favorably with those obtained by more powerful non-variational

techniques. Finally, physically complex interactions such as polarization

and electron correlation effects can easily be included in a variational

calculation within the assumed forms of the trial wave-functions.

It is for these reasons that variational principles are still

competitive with other more powerful non-variational scattering

techniques.

The first serious attempt to apply variational principles

to electron-helium scattering was made by Moiseiwitsch (Ref. 1).

i I - - I I I i - -| I " .. . '" . . . .. .. . '..... .. . . .



Using the variational method proposed by Hulthen (Ref. 2) and a

two parameter trial wave-function, Moiseiwitsch found good agreement

(107.) for the S-wave elastic scattering phase shift with the known

numerical solutions of the same integro-differential equations performed

earlier by Morse and Allis (Ref. 3). Moiseiwitsch further suggested

that improved results could be obtained by more complex trial

wave-functions.

In a detailed study of variational principles applied to

continuum problems, Schwartz (Ref. 4) first noted that at certain

system energies variational calculations possess intrinsic anomalous

behavior. He showed that as more complex trial wave-functions and

more adjustable parameters are added to the variational calculations,

the solutions do not converge uniformly, and can turn out totally

erroneous for specific incident electron energies. Schwartz also

studied the nature of these anomalies. He showed that although a

trial set of functions is linear with respect to a set of corresponding

parameters, the quantity which is extremi~ed is the expectation value

of the scattering Hamiltonian operator. This quantity is always quadratic

in the parameters of the trial wave-function. As a result, the

parameters of the wave-function have, in general, two roots, only one

of which is physical. At certain system energies these roots can

be complex and the variational method will break down.

Several attempts have been made to eliminate the anomalous

nature of a single variational method by combinations of two different

variational methods. Conditional calculations proceed in the same

manner as a single variational method. However, when anomalous results

begin to appear in one variational calculation, a transfer is made to

a second variational method. Although two independent methods

possess intrinsic energy anomalies, they do not, in general, occur

in the same energy regions. Thus by alternating back and forth

whenever a single method fails, accurate results have been obtained

over the entire spectrum applicable to the physical limitations of
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the approximations made.

Malik (Ref. 5) and Rudge (Ref. 6) proposed combining the

variational method of Hulthen and Kohn (Ref. 7). Application of this

technique has been only applied to electron-hydrogen scattering by

Rudge (Ref. 6). Nesbet (Ref. 8) proposed the method of combining the

variational principles of Kohn and the Inverse Kohn, Rubinow (Ref. 9).

Both combinational methods demonstrated the anomaly-free nature of the

technique but were restricted in practice to elastic scattering for

hydrogen, since the methods could not be generalized to include

inelastic scattering.

The most successful anomaly-free variational technique is

the Transformation Method, Harris and Michels (Ref. 10). This

method introduces a transformation which ensures that the anomalous

energy regions are forced outside the range of the energy spectrum

of interest. Application of the transformation technique to variational

calculations of electron elastic scattering from helium was first

performed by Michels, Harris and Scolsky (Ref. 11). This work was ,L
extended by Sinfailam and Nesbet (Ref. 12). Trial exponential

wave-functions with decreasing numerical indices were used. The results

of the calculations of the cross-sections compared extremely well

(3% estimated probable error) to the experimental measurements of

Golden and Bandel (Ref. 13).

Nesbet (Ref. 14) refined the calculations of Sinfailam and

Nesbet (Ref. 12) for electron elastic scattering from helium. The

results for the cross-section compared extremely well (1.5%) with the

best non-variational technique, the R-matrix Method, O'Malley, Burke

and Berrington (Ref. 15). The Nesbet (Ref. 14) calculation represents

to date the best variational results on the electron-helium elastic

scattering croos-section.

The single drawback of the anomily-free variational methods

is the increase in numerical labor required above the simpler variational

calculations. Recently, Shankland (Ref. 16) proposed a variational

3
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method which retains the simplicity of the single variational approach.

Recognizing that a single variational method fails only in small

energy regions near non-physical anomalous poles, he proposed a

simple interpolating technique to obtain an accurate cross-section

in the singular regions. If successful, this method will reduce

the numerical labor required for computing accurate elastic

electron-atomic cross-sections over a large energy spectrum.

Objective

In the present work, the Shankland Variational Method is

formulated for the electron-helium elastic scattering problem.

Specifically, an algorithm is developed to obtain variational

solutions for the scattering phase-shifts as a function of incident

electron energy.

Approach

In Chapter II the basic formulation of the electron-helium

scattering problem is presented. In particular, the close-coupled

formulation is discussed. Specifically, the simplest case of the

closed-coupling method, the one-state approximation, is developed

in detail. In Chapter III the Matrix-Variational Method is formulated.

First the general variational method is applied to the electron-helium

scattering equation. Second the results of the variational formulation

are developed into a matrix eigen-value problem. In Chapter IV a

detailed algorithm is presented for the calculation of the elastic

scattering phase-shifts as a function of incident electron energy.

Finally, an interpolation method is discussed for the special case

in which the Matrix-Variational Method mathematically yields anomalous

results. Appendix A is a compilation of the A-Matrix elements

required in the computation. Appendix B is a compilation of the

B-Matrix elements also required in the computation. Appendix C

is a compilation of the definite integrals used throughout the calculation.

4
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II. The Quantum Mechanical Problem

Basic Formulation

In this section the quantum mechanical formulation of electron

impact with helium will be presented. The basic framework for this

approach can be found in a number of articles, Massey (Ref. 17),

Moiseiwitsch and Smith (Ref. 18), as well as texts by Mott and

Massey (Ref. 19) and Geltmann (Ref. 20). In the following, the

formulation presented by Mott and Massey (Ref. 19) is the most

convenient. Atomic units will be used throughout, (Ref. 19).

The wave equation for the scattering of an electron

by a helium atom is given as

i °"; 0(2.1)r, e z =Lr;,t e

where r;,rzra are the distances of the three electrons from the

helium nucleus, i,€$are the distances between the electrons,

and A is the total energy of the system. The total system

wave-function W.) is an anti-symmetric function in

the spin-space coordinates of each pair of electrons.

The standard method of attacking :,e general N-body

scattering problem is to expand the total system wave-function

in terms of the orthonormal set of target wave-functions. For

electron-helium scattering we simply have

190 ,C-,R..gi j(' (2.2)

where denotes the nth state system wave-function for the

unperturbed helium atom. It is an anti-synmetric wave-function

in the spin-space coordinates of the helium electrons and is a

solution to the helium equation

i5
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[ a + - '*.all) 0 (2.3)
th

where En is the energy of the n state of the atom. The summation

in equation (2.2) includes both a sum over bound spin-space states

and an integration over the continuum states of the helium system.
&th

The function Fn(ff.,iu), representing the n state expansion

coefficient, is a one-electron scattering wave-function. The

operator A anti-symmnetrizes the product functions as required

by the Pauli Principle.

If the wave number of the incident electron is k,
in atomic units, then the one-electron scattering wave-function

F,(#.O'S) has the asymptotic forms

F (Fr 3a)-ExP(ZjtO')a 3 + ________%(93a_ (2.4)

ir3

and3

Fn (i0,o)- Pbnr) (e c 3  (2.5)

where the function F( )denotes the plane wave incident along the

axis toward the target atom in the zero bound state configuration

and an elastic outgoing spherical wave in the same spin state.

The spin function 03 denotes the familiar normalized OC or

spin state representing electron spin-up and spin-down, respectively.

The function FnrCS denotes an inelastic spherical outgoing wave

in the allowable spin states, , provided is real. If j'2

is imaginary, the incident energy is less than the energy required

for an internal transition of the atom to occur, and the boundary

conditions, equation (2.5), describe a decaying spherical wave, the

sum of which describes the polarization of the initial atomic bound

6



state. The constraints on the total system energy are given

asymptotically as

E ** + E~
= -# E., (2.6)

Once the detailed solution to the Schrodinger equation

(2.1) is available, the scattering amplitudes jo(o) can be determined

from the asymptotic boundary conditions defined by equations (2.4)

and (2.5). As shown in Mott and Massey (Ref. 19), the total scattering

cross-section at incident energy A: is given as

= w f (6)1 1 Sim ecle (2.7)

Close-Coupling Approximation

Although the expansion represented by equation (2.2) is

formally exact, several practical difficulties limit all scattering

calculations. First, for atoms other than hydrogen or one-electron

systems, the target eigen-states are not known exactly. Second,

the bound target states form an infinitely denumerable set of functions.

Finally, the complete set of target states must include the ionization

continuum. In this case, the state index n is a continuous variable

and the number, though infinite, is not denumerable.

In practice, only a relatively small number of states

can be included in the expansion (2.2) and are generally carefully

selected. However, a number of mechods have been developed to account

for those terms neglected in the expansion. The basic approach of

these methods is to replace the unperturbed target state wave-functions

with pseudo-state functions corresponding to the first-order perturbation

of the target state by a polarizing field. These pseudo-states

can be constructed in terms of the unperturbed target wave-functions

or other convenient basis functions, Danburg and Karule (Ref. 21),

Danburg and Geltmann (Ref. 22). The reader is referred to Mott and

Massey (Ref. 19) and Nesbet (Ref. 23) for a complete discussion of

7



the pseudo-state method.

Since the purpose of this study is the application of a

variational principle to the elastic-scattering of electrons from

helium in the atomic ground state, it is convenient to adopt the

simplest case of the close-coupling approximation. For incident

energies of the continuum electrons less than the first excited

state of helium (19 e.v.), the one-state approximation is assumed.

Thus

C ' r A , A (2.8)

where Vo(# *rj4V2) denotes the unperturbed ground state helium

wave-function, Fo(&) denotes the space part of the incident electron

wave-function, and C3 denotes the electron incident in the

arbitrary spin-up state.

Substituting the space-spin helium wave-function and

anti-symmetrizing by a cyclic perturbation of the electrons, we It
have

where the spin function Cta/taQ. JtJ31V/&'i is anti-symmetric with

respect to the bound helium electrons 1 and 2 and corresponds to

a doublet total spin state of the helium and incident electron.

V,(rpp%) is the space part of the helium wave-function and is

symmetric with respect to electrons 1 and 2.

If we substitute the total system wave-function (2.9)

into the Schrodinger equation (2.1), pre-multiply by

" #j (,sum over spin and integrate over

and we obtain

8



Va" Va r. F. F F.00'(2.10)

where

00 r3 0 r

and

.. )V=1.(Ql0 + .. 4. , , ra.a. (2.12)

r3 F..rt ra r

In order to obtain this result we used Green's theorem,

the symmetry properties of the electrons and the equation

r-,) V.: 7. - 4 :i + L- E0 a(rr&, lP& f ' 0(.3

This condition is certainly satisfied if Fit) is an

exact solution to the helium equation (2.3). Unfortunately, no

exact helium solution exists. However, equation (2.13) can also be

satisfied if a variational wave-function for the ground state

of helium is used and the ground state energy Eo is given by

the variational energy. In this study we have adopted Hylleraas'

variational function given as

)= Z 3 EXP -Z r ) (2.14)

lZ9



where Z= a7/i6 and Eo=m-uaZ and which satisfies equation (2.13).

Equation (2.10) represents a partial integro-differential

equation for the scattering function Fo( . Its exact solution,

which satisfies the boundary conditions of equation (2.4), formally

determines the scattering cross-sections. For low-energy scattering

it is convenient to reduce the partial integro-differential equation

to a set of ordinary integro-differential equations. Performing

a partial wave or angular momentum expansion on the scattering

function Vr() we have

F0  E~ FfP ( CIDSe) (2.15)
r L0L

where P(COSG) are the Legendre polynomials. Substituting Fo(J)

into equation (2.10), pre-multiplying by PUC@osG) , and integrating

over all scattering angles and using the Hylleraas helium wave-function

we obtain

00 oo

where

and

2

R o(rrr3 ): r 2 (2.18)(aL +L)

and

,L L~t (2.19)

10



The boundary conditions of the radial function s.(r) are

0 r.0 = (2.20)
f (r)- filmN ( *.r - Lr +,I,.) r -o so

Z

where 'Z&. is the energy-dependent phase shift of the L. -partial wave

and is determined by the exact solution to the integro-differential

equation (2.16). It can be shown, Mott and Massey (Ref. 19), that

the total elastic scattering cross-section at incident energy I:t is

=(r E (aL.) 51m (2.21)

In the case where the energy of the incident electron is

small, only the zero order phase shift if* (L=O) is important in the

calculation of the total cross-section. This was done by Morse

and Allis (Ref. 3), by numerical integration of equation (2.16).

Setting L=O and defining It
K- (r, Y0, , , , " ) dra (2.22)

we have

d 1 rK.(0, 3  dr, (2.23)

dr,

where

Koo(r',r 3 )= a1,Z -r3 Exp (-Zr) E xp(-zrs).f (/.4z-z') (2.24)

+ ( )g}. (+-z) - v.cuz ,+ 3Cp (- zri , exp (-1Zr)

+ LXp (-E.Zr) + Aup (- 2zr,)j

Iii



III. The Variational Method

General Formulation

In order to solve variationally the S-wave integro-differential

equation, we define the functional i as

- m

0 o
t I

where At(r) is an assumed trial function.

Clearly, if 4(rJ is an exact solution to equation (3.1),

fo (P) , then &p0. If f*;(r) is not exact, then Jt. constant. Now

consider the change in a if .O1f) is defined as

S(r) (For) + JA.D(-) (3.2)

where df,0 "(r)is a first order deviation from the exact solution.

Substituting, the resulting change in t- is

6j faCV= +-o rSjo r) (3.3)

14 N(V!JfO (--) ko (#-g-) dr.dr3 4 for
0 

0

where the symbol dC.l.C)I-. denotes integral terms of second order

in the deviation from the exact solution.

Applying Green's theorem to the first term in equation

(3.3), we have

f oOr1) a'Jd(rP . , = fF.o'r .0 0") d, (3.4)

is dos%3.4
• f. .SF+.,.,-~ d5., N

drs
12



where the surface term is evaluated at the boundaries. The boundary

conditions on 4O(r) are given by equation (2.20) for LO as

:Fo(r)':O r-* o (3.5)

fa r) sin ( kor + 'to) r 0

or in different form

(.) , n(*O,,r)+4 OS(k.-) r 00 (3.6)

w~re

,= , eos to

a q Slit t&O (3.7)

and 4 is a normalization constant.

The boundary conditions on the difference functions are

simply

dfeor) :0 r-bo (3.8)

dAe(P) = d, $I 1n ( Jo ) + do.a CO S (k*0r -)o

Substituting Tor the boundary conditions, the surface term reduces as

- 4(a)~4r.fi+Q ~~ a$ 4u6Qak (3.9)

If we impose on the normalization constant . the condition

Cp4. 0 (3.10)

then it follows that

+1 a h, ID - qt *a 0 a - a A(3.11

13



and the resultant change in the functional ;L is

m -m, = -k o 'A d + .f " . a- v ( 1-s ,) I o ,, ( 3 . 1 2 )

- fo(r)fdf(,(-,)R (,r 3, ) aird, + ( +dJa.(r))
0 

a

Since the kernel function M0 (rrg) defined by equation (2.24)

is symmetric in r and r3  we may interchange the order of integration

and interchange the indices in the third term of equation (3.12).

Thus we have

Jfo(r3)J6: (r,kee(r)ol~ or, :f[d4(~)Jov(, vbo ob ~ dri (3.13)
G 0 00

Substituting into equation (3.12) we have

J -J 2 4qp -. &(iF 0 "%) (3.14)

where the differential and integral terms vanish since Ao(rJ is an

exac* solution to the integro-differential equation (3.1).

Since the second order term can be forced vanishing small

by choosing more and more complex trial functions which better

approximates the exact solution fa(rs) , we have

d(I + ADAo*-Ito) = 0 (3.15)

Thus the functional (*.+,o2Ito) is stationary provided

d4:O .

Since the condition dA =O represents a constraint on

the variational principle it can conveniently be incorporated into

the stationary equation (3.15) by use of a Lagrange multiplier.

14



From equation (3.7) we have

A " ( 2 ( 3 .1 6 )

If we require the normalization of the asymptotic solution,

equation (3.5) as Azi , which satisfies the condition dR:O , then

the constraint equation becomes

4 + '(3.17)

Substituting equation (3.16) into (3.15), and introducing

a free parameter /12. , a Lagrange multiplier, the stationary functional

can be written as

71 (3.18)

Matrix Variational Method

Let f(r)denote a trial function defined as

=N

,I. (3.19)

where (*n(-r} is an assumed set of functions, and {4, a set of

undetermined coefficients. The conditions on the function set are

40() = Sin ( 4r) (3.20)

S= os(k,)(.- EXp(-,.,))

and

{ ,(r)J =o r = 0 3)

{40,(r) =0 rs (n 13) (3.21)

where U is an assumed positive definite parameter. We assume that

15



the trial function, equation (3.19) is an approximate solution to

the integro-differential equation (2.23). Clearly by construction

the trial function satisfies the boundary conditions of the exact

solution, equation (3.6).

If we substitute the trial function into the functional

equation (3.1), and perform the differential and integral operations,

the functional 2 becomes

X L al ( Anm, - O )(3.22)

where

Astrn On(Yj 4: J102- VOO (r3)} 4M (1r)dP 3  (3.23)

and

o 00
13n ")1r r Ko(r 3)Or l' (3.24)

Since the fUnctions t#nft)Jare known, the A ands elements

are numbers corresponding to a given value of the electron energy

The functional X at a given electron energy reduces to a numerical

set of terms in the undetermined coefficients a . Thus the functional

which is stationary under variations is

MNa.
31= d n(Q. nMf-e..v)(t + 4(41, 41)*Ap"(1M)-A(4t +4j.1) (3.25)

In=1 m:I 41 z

If we vary the functional with respect to the parameter

set f a we obtain a set of N equations defined by

! 1IL 0 (l 1< N) (3.26)

Performing the differentiation, the resulting set of equations

16
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in matrix form is

(aIJto)A0 . 0 (3.27)

where 0 is an MtaN symmetric matrix whose elements are

Dnm2 (Anm- 8) + (4mA+ Grhn) (3.28)

is an M4 matrix with elements S,: I , Sgj a -1 and the set

1fealaoJ, & is the IV . column matrix whose element set is (4nj

and M4 is an NIxN matrix with elements MitMazit and fmIwwtO3.

Formally, equation (3.27) represents an 1tKN linear matrix

problem which can be solved for the complete set of coefficients, tan1

However, only the coefficients 4,and 4%have physical significance

for determining the scattering phase shift, equation (3.16), and thus

the collissional cross-section. It is convenient therefore to reduce

the NX14 linear matrix problem to a 2.X2. eigen-value problem.

Let.X be a sub-set of the column matrix 4. composed of

two elements Q and 42. Similarly, let Y be a sub-set column

composed of M-;k elment - a,.** Thus

(~Y) (3.29)

Defining

.,A A --%;LA To ( 3. 30o)

equation (3.27) becomes

)C (1

17

now



where C., is a aw.1 array consisting of the four elements: O,

Dal + *2# , and Dl . The term C,21 is a two row by m column

array containing the element setsiDon) and [Dani for (3-_n!N)

Similarly C1 is an N row by two column array containing the elements

{Dl) and tOnalfor (3 Sn 1 f) . In particular, Cal is the transpose

of 4 . Finally, A is an (N-A)x(,-a) symmetric array composed of

the elements {Dnm) nVn) 3.

Expanding the matrix equation (3.30) we have

C, 1 x+ cay =~ (3.32)

C2i X + Caay = 0

Operating on the lower set of matrix equations by the inverse matrix

of the Ca.array, we have

YU"- .. (3.33)

Substituting for y we obtain a J2N*. eigen-value problem

( C'C -C lC )X 6 1AX (3.34)

Expanding out the ell elements the eigen-value problem

becomes

(Nt - E;:a, ) A ( (3.35)

where we have defined the value of the E elements as

E-M CoeC&CnI I z (3.36)

18



and denotes the mm ele, nts of the C#1ZC=2 C1 1  matrix operation.

The characteristic equation for the eigen-values,&t is

simply

(3.37)

- (OaE3 JC) 021 - Eat +AD)I Q

which can be solved by elementary means.

The solution to equation (3.37) yields two eigen-values,

A nanda since the characteristic equation is quadratic in/

Similarly there exist two eigen-vector solutions, X, and X1 , as

well as two values of the phase shiftsil, andi 1 for each value

of the incident energy.

In practice it is not difficult, in general, to select which

values of the phase shift correspond to a physical solution to the

scattering problem. This is due to the fact that the phase shifts

are defined as the arc tangents of the ratios of the components of the

eigen-vectors, equation (3.16). Thus one set of phase shifts will

exhillit a uniform and continuous behavior as a function of ,.nery.

while the second set of phase shifts exhibits a strongly divergent

behavior in energy. Although both sets of phase shifts represent

the formal solution to the quadratic equation, the diverging set of

phase shifts can be rejected as the physical solution to the

scattering problem.

However, equation (3.7) presents a far more difficult

problem for specific regions of the electron energy. Since all

the roots of the characteristic equation can be complex. Since the

scattering phase shifts are real for all values of the electron energy

less than the excitation energy of the helium atom, the variational

method will fail. In this case both solutions to the characteristic

equation yield non-physical results.
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Another problem results due to the quadratic nature of the

characteristic equation and the continuous dependence of the solutions

on the incident energy,Ak:. While over a broad range of the energy

spectrum only one set of phase shifts represents the physical solution

to the scattering problem, for different energy regions the physical

set can change. Thus we can expect a small energy region in which

both sets of phase shifts are simultaneously diverging. In these

regions the physical phase shift must be obtained by averaging the

two. It must be emphasized that there is no physical significance

to the anomalous behavior of the phase shifts as a function of

incident electron energies. In fact, the anomalous behavior is simply

an artifact of the variational method of calculation applied to

the continuum scattering problem.

In Chapter IV we will develop a computational algorithm

for the variational calculation using Slater-type trial functions

for the trial function set (5n(r) J. n3 . In particular we will

also discuss an interpolation technique to obtain values for the phase

shifts at the anomalous energy values.
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IV. The Variational Calculation Al&orithm

Slater-Type Functions

The first step in the variational calculation is the

selection of a specific set of basis functions to represent the trial

solution, (r) . Clearly, the basis functions o,(r) and #1 Cr)

defined by the equations (3.20), are constructed in order to satisfy

the boundary conditions of the exact solution to the integro-differential

equation, equation (2.23). However, the conditions imposed on the

basis set of functions for M Z3 are simply that they vanish at

the boundaries, equation (3.21). A particularly simple set of

functions which satisfy the conditions are the Slater-type Functions

defined as

qn(r) = r EXp(-rr) 
(4.1) I

where 15a is a positive number which is different for each functional

term in the expansion, equation (3.19). Thus the assumed form of

the trial wave-function is

N

Q~~r= l SIrM(kr)+ Q1'COS (jt 0v)(j- j~x(-ar)) + L ,,
"=3

Substituting equation (4.2) into equations (3.23) and (3.24)

we can obtain explicitly the matrix elements Anm and 8 n .

Appendix I is a compilation of the #nm matrix elements. Appendix II

is a compilation of the 8 'm matrix elements. Appendix III Ls a

compilation and an evaluation of the definite integrals in which

the elements A," and Bnm are expressed. Since the evaluation of

the matrix elements is particularly tedious, the choice of the

Slater-Type Functions was made to minimumize the chance for error

involved in the evaluation. In addition, the definite integrals

resulting from the differentiation and integration of the functions
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have, in general, simple closed-form solutions. Clearly there is

little restriction on the form of the basis set for i on(r)J, n t3

However, in order to take advantage of the Variational Method as a

labor saving technique for scattering calculations, there exists,

in practice, a pragmatic trade-off in the selection of the basis set.

Clearly, with the set of matrix elements given in the appendices,

we are in a position to generate a computational algorithm to calculate

the S-wave phase shift for the elastic scattering of electrons from

helium in the atomic ground state.

Computational Algorith

STEP I: Initialization of Parameters

There are two types of numerical parameters needed in the

calculation. First, the values for to and Z denoting the wave-number

of the incident electron and the ground state energy of the helium

atom relative to the first ionization continuum, E*= -ZI (atomic units).

For the Hylleraas wave-function, equation (2.14), the first continuum

is E,=-2.g&76 , which restricts the values of Ao between O o<J'.6 .

Since we have neglected the contributions of the excited states of

hel itm, the values taken by must be restricted to less than t'-,e

energy of the first excited state of the target atom. Thus we have

Zxi.697 and O<A6-l.3 .

The second set of parameters required are those defined by

the basis set, goand the set n} , depending on the number of

Slater-Type Functions assumed. Sinfailam and Nesbet (Ref. 12)

have had particular success in the more complex anomaly-free Variational

Method with a decreasing geometric progression of exponents

Although this selection is difficult to justify on mathematical grounds,

we will assume that the decreasing geometric progression represents

a starting point in the calculation. Clearly, accurate cross-sections

will result only after several different runs are made using different

distributions of the parameters ({SpJ . To initiate the calculation,
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the following set of parameters are defined %12= ' ,-

Paz (Pn-,/., for n 3 

STEP It: Calculation of the Matrix Elements

Once the numerical values - , 4 , z1 , to ,2r...,Zare
specified, the matrix elements Aawand Som can be calculated explicitly

using the Appendices and the formulae for the evaluation of the

definite integrals, Appendix III.

STEP III: Construct the Dwn Matrix

Once the matrix elements AmmandBeftare known, we can construct

an auxiliary matrix Dnom given by equation (3.28). If we set 01,'- Dol,-k

and O;1 =Da,.4, the simultaneous equations are defined, equation (3.31),

For illustrative purposes we will assume a two-free parameter trial

function which produces a 4xf maLrix -zut. Thus equation (3.31)

becomes

D,1 D'2 013 Dq 114 as (4.3)
D'A' D A% 0 &3 1)ag 12,Q

034 ID2 D 33 03t a3  a3

D1j 0,01 01# 0# Qq j q

where

(l DI (4.4)

Du Dq) 
(5)

I Dig Dime -T
, ) and C:. - 1z (4.6)
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I .

In fact, the 4p matrix is independent of the number of

basis functions used in the expansion of the trial function ff(r).

STEP IV: Calculate the E Matrix

At this point the ;'a eigen-value problem is set up,

equation (3.35). The most difficult part of the program, from a
I( Ir

numerical point, is the operation C,2. C, 2 , to yield a

ZuZ matrix with elements

-1 I1
IE 1 C 1% Ca% C.9 I u (47

-I !Caa : C,a Cal Cug i z

E c C - I 1a

Clearly in the case illustrated, this only requires obtaining

the inverse of the ZX2. matrix, and can be accomplished by elementary

means, provided DET C2$ o . For the general N-trial function case,

we require the inverse of a Q-Z WN -2 matrix. In fact, the speed

and efficiency of performing the C-. matrix operation represents

a pragmatic bound on the number of basis functions used or the range

of incident electron energy spanned in a single machine run. Clearly,-i

if D11 C2sO, which is a preliminary requirement for the C-1

operation, the Matrix Variational Method completely fails to yield

a phase shift at the specific value of W . In this case the trial

function assumed does not represent the exact solution to the

integro-differential equation to first order and the stationary

principle must he suspect. Clearly, additional terms must be added to

jo(r) and the particular energy region around X& studied in a later

machine run. In practice, if DrCTaO, a simple print of the

singular region is only required. A return to STEP II with an

incremental increase in the value of ko removes the calculation

from the singularity and the program proceeds.
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STEP V: Solving the Eigen-Value Problem

All the elements are now available to solve the eigen-value

problem, equation (3.37), and which is of the form

z~+ :0 (4.8)

which has the solution

"It- ________ (4.9)

2.

and yields the real eigen-valuesA and A , proveded > '4- .

In this case the eigen-values are substituted back into equation

(3.35) and the real components of the eigen-vectors (4,,a%)L and

(,,aaare determined. From these, the needed phase shifts are t
calculated as Vt t 'tWVaQ,/4Jand qg: tQii'( 2 /kt,)2 .

Figure I is a schematic plot of the real eigen-values Ii.

and #1 as a function of Jt for electron scattering from hydrogen,

Shankland (Ref. 16). Although the basis set used by Shankland were

Gauss-type functions, the general characteristic of the solutions,

using the Vatiational Mthod, are independent of the basis set.

Thus Figure I illustrates the general nature of the solution to

the eigen-value problem.

From the figure, it is clear that at a given wave-number

only one phase shift has converged to the exact solution to the

scattering equation. The other phase shift is divergent. In practice,

a simple print and/or plot of the values #I and '(i as a function of

i, -: ;, :, c, ,, determine accurately t!-, p - :ical phase , li t't

over the entire energy spectrum.

However, there exist anomalous regions tear k@a'.I and Ak,- 7
where neither solution #, or 11 converged to the exact solution.

Similarly, there exists another region 4.-'~ where &aC 4c
and the roots of the eigen-value problem are imaginary. Clearly, if
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high accuracy of the phase shifts is not required in the anomalous

regions, then simple graphical or polynominal fits can be used to

estimate the value of the phase shifts. If high accuracy is required,

a more powerful interpolation technique is needed.

Interpolation Technique

Since the general location and nature of the anomalies are

known, a second machine run is required to study the anomaly in detail.

In this case the range on *0 is restricted to the anomalous region.

Real Phase Shifts

Shankland (Ref. 16) proposed an empirical technique to

obtain accurate phase shifts in the anomalous regions, where PI

and 02 are real, based on the Stationary Principle. Clearly, the

entire development of the Variational Method is based on the fact

that the functional tA**,, equation (3.15), is stationary

with respect to variations of the functional. Thus the value of

the functional X has two real values defined as

ZI= + v.10)q (

X IV%+ wta. l (4.11)

Defining the weighed average of the functional as

X'= dra2, -x 1r. ('4 .12)

we have

7(4.13)
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L L 2. qua tioni (3.27)

DEnNE~

MA14TR IX

rCALCLL41E E.quation (3, 37)

C014PLEX EquaIion (3.%u

C~Luj~VF Fqita Lon (3.10

~1 2.or (1 17)

IgrQ 2. Algu(t-i,!i-A Th t11c 1LoI ti!e S-WZIvL

c a L -r ing ((:)i injtied)
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V. Conclusion

The object of this thesis was to theoretically formulate

the Shankland Variational Method for application to the electron-

helium elastic scattering problem. It was found that the scattering

problem reduces, in the limit of low electron incident energy, to

solving an integro-differential equation.

Instead of formally solving the differential equation, a

variational approach was used to approximate the exact solution.

The results obtained by applying the variational stationary principle

were formulated into a general matrix problem. It was shown that

the matrix problem redues to a 2Km. matrix eigen-value problem.

An algorithm was developed to calculate the phase shifts for

the scattering electron at irn'cident energy , by solving the

eigen-value problem. An interpolating technique was discussed which

can extract the phase shifts when the eigen-value problem gives

anomalous results.

It appears from the theoretical formalism that the Matrix

Variational Method provides a relatively simple technique for solving

complicated scattering problems. The author suggests that further

work be directed toward implementing the algorithm numerically

and comparing the results with known numerical solutions of the

integro-differential equation. Although the physical limitations of

the theory preclude comparing the results with experimental measurements,

the author suggests that further work be performed to develop ti,;

technique for polarized orbitals and inelastic collisions.
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APPENDIX C Thel)f efiltn it l! in cralaI

[n t isi app ondix , Iist thc d k Ih t .,- I

calculate he A and 3 matrix oi&',.nIt so I !I(. .ti '; c( IOJ in 1

ti ovalI uat ion o f tLt, int:c ;rals is Crad.;'ce, ;i an! i,,.z, ik ( .e .'

> 02o

"IL7( ')= _ ar

¢ +4

F=- ( a *),

,(y) = 1 a r > 0

jig (T) =  ; > 0
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condi tion of the variational met hod i s also formulanted inito a1 jieneral N ', N

matrix njeual ion wh icli re(tices to n x 2 o 1 ieui--salie ira ,t ri x probl e!" for' thle
phasqe shift of Hie sent terint, electroni. An a1gor i t him i pr !ecnf ed to olbtainl
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the collisional cross-sectionA for elaqt c SCaItteriiig as a funictiTn

ic [dent electron enlerg-.
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